Introduction to Iterated Monodromy Groups
The theory of iterated monodromy groups was developed by Nekrashevych [9]. It is a wonderful example of application of group theory in dynamical systems and, in particular, in holomorphic dynamics. Iterated monodromy groups encode in a computationally efficient way combinatorial information about any dynamical system induced by a post-critically finite branched covering. Their power was illustrated by a solution of the Hubbard Twisted Rabbit Problem given by Bartholdi and Nekrashevych [2]. ...