Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

On uniqueness of distribution of a random variable whose independent copies span a subspace in L p

S. AstashkinF. SukochevD. Zanin — 2015

Studia Mathematica

Let 1 ≤ p < 2 and let L p = L p [ 0 , 1 ] be the classical L p -space of all (classes of) p-integrable functions on [0,1]. It is known that a sequence of independent copies of a mean zero random variable f L p spans in L p a subspace isomorphic to some Orlicz sequence space l M . We give precise connections between M and f and establish conditions under which the distribution of a random variable f L p whose independent copies span l M in L p is essentially unique.

Tensor product in symmetric function spaces.

S. V. Astashkin — 1997

Collectanea Mathematica

A concept of the multiplicator of symmetric function space concerning to projective tensor product is introduced and studied. This allows us to obtain some concrete results. In particular, the well-know theorem of R. O'Neil about boundedness of tensor product in the Lorentz spaces Lpq is discussed.

Real method of interpolation on subcouples of codimension one

S. V. AstashkinP. Sunehag — 2008

Studia Mathematica

We find necessary and sufficient conditions under which the norms of the interpolation spaces ( N , N ) θ , q and ( X , X ) θ , q are equivalent on N, where N is the kernel of a nonzero functional ψ ∈ (X₀ ∩ X₁)* and N i is the normed space N with the norm inherited from X i (i = 0,1). Our proof is based on reducing the problem to its partial case studied by Ivanov and Kalton, where ψ is bounded on one of the endpoint spaces. As an application we completely resolve the problem of when the range of the operator T θ = S - 2 θ I (S denotes the...

Sequences of independent identically distributed functions in rearrangement invariant spaces

S. V. AstashkinF. A. Sukochev — 2008

Banach Center Publications

A new set of sufficient conditions under which every sequence of independent identically distributed functions from a rearrangement invariant (r.i.) space on [0,1] spans there a Hilbertian subspace are given. We apply these results to resolve open problems of N. L. Carothers and S. L. Dilworth, and of M. Sh. Braverman, concerning such sequences in concrete r.i. spaces.

Page 1

Download Results (CSV)