Operator theoretic properties of semigroups in terms of their generators
Let be a C₀ semigroup with generator A on a Banach space X and let be an operator ideal, e.g. the class of compact, Hilbert-Schmidt or trace class operators. We show that the resolvent R(λ,A) of A belongs to if and only if the integrated semigroup belongs to . For analytic semigroups, implies , and in this case we give precise estimates for the growth of the -norm of (e.g. the trace of ) in terms of the resolvent growth and the imbedding D(A) ↪ X.