The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
In this paper we introduce and investigate three new subclasses of p-valent analytic functions by using the linear operator Dmλ,p(f * g)(z). The various results obtained here for each of these function classes include coefficient bounds, distortion inequalities and associated inclusion relations for (n, θ)-neighborhoods of subclasses of analytic and multivalent functions with negative coefficients, which are defined by means of a non-homogenous differential equation.
In this paper, we obtain the Fekete-Szego inequalities for the functions of complex order defined by convolution. Also, we find upper bounds for the second Hankel determinant for functions belonging to the class .
In this paper we introduce and investigate three new subclasses of -valent analytic functions by using the linear operator . The various results obtained here for each of these function classes include coefficient bounds, distortion inequalities and associated inclusion relations for -neighborhoods of subclasses of analytic and multivalent functions with negative coefficients, which are defined by means of a non-homogenous differential equation.
Download Results (CSV)