The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

Lower bounds on signed edge total domination numbers in graphs

H. KaramiS. M. SheikholeslamiAbdollah Khodkar — 2008

Czechoslovak Mathematical Journal

The open neighborhood N G ( e ) of an edge e in a graph G is the set consisting of all edges having a common end-vertex with e . Let f be a function on E ( G ) , the edge set of G , into the set { - 1 , 1 } . If x N G ( e ) f ( x ) 1 for each e E ( G ) , then f is called a signed edge total dominating function of G . The minimum of the values e E ( G ) f ( e ) , taken over all signed edge total dominating function f of G , is called the signed edge total domination number of G and is denoted by γ s t ' ( G ) . Obviously, γ s t ' ( G ) is defined only for graphs G which have no connected components...

Page 1

Download Results (CSV)