The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 11 of 11

Showing per page

Order by Relevance | Title | Year of publication

An extension of a theorem of Marcinkiewicz and Zygmund on differentiability

S. MukhopadhyayS. Mitra — 1996

Fundamenta Mathematicae

Let f be a measurable function such that Δ k ( x , h ; f ) = O ( | h | λ ) at each point x of a set E, where k is a positive integer, λ > 0 and Δ k ( x , h ; f ) is the symmetric difference of f at x of order k. Marcinkiewicz and Zygmund [5] proved that if λ = k and if E is measurable then the Peano derivative f ( k ) exists a.e. on E. Here we prove that if λ > k-1 then the Peano derivative f ( [ λ ] ) exists a.e. on E and that the result is false if λ = k-1; it is further proved that if λ is any positive integer and if the approximate Peano derivative...

Page 1

Download Results (CSV)