Non-free two-generator subgroups of SL(Q).
The question of whether two parabolic elements A, B of SL(C) are a free basis for the group they generate is considered. Some known results are generalized, using the parameter τ = tr(AB) - 2. If τ = a/b ∈ Q, |τ| < 4, and |a| ≤ 16, then the group is not free. If the subgroup generated by b in Z / aZ has a set of representatives, each of which divides one of b ± 1, then the subgroup of SL(C) will not be free.