Partition-based conditional density estimation
We propose a general partition-based strategy to estimate conditional density with candidate densities that are piecewise constant with respect to the covariate. Capitalizing on a general penalized maximum likelihood model selection result, we prove, on two specific examples, that the penalty of each model can be chosen roughly proportional to its dimension. We first study a strategy in which the densities are chosen piecewise conditional according to the variable. We then consider Gaussian mixture...