The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

Decomposing complete graphs into cubes

Saad I. El-ZanatiC. Vanden Eynden — 2006

Discussiones Mathematicae Graph Theory

This paper concerns when the complete graph on n vertices can be decomposed into d-dimensional cubes, where d is odd and n is even. (All other cases have been settled.) Necessary conditions are that n be congruent to 1 modulo d and 0 modulo 2 d . These are known to be sufficient for d equal to 3 or 5. For larger values of d, the necessary conditions are asymptotically sufficient by Wilson’s results. We prove that for each odd d there is an infinite arithmetic progression of even integers n for which...

On Decomposing Regular Graphs Into Isomorphic Double-Stars

Saad I. El-ZanatiMarie ErmeteJames HastyMichael J. PlantholtShailesh Tipnis — 2015

Discussiones Mathematicae Graph Theory

A double-star is a tree with exactly two vertices of degree greater than 1. If T is a double-star where the two vertices of degree greater than one have degrees k1+1 and k2+1, then T is denoted by Sk1,k2 . In this note, we show that every double-star with n edges decomposes every 2n-regular graph. We also show that the double-star Sk,k−1 decomposes every 2k-regular graph that contains a perfect matching.

Page 1

Download Results (CSV)