The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We address a multi-item capacitated lot-sizing problem with setup times that arises in real-world production planning contexts. Demand cannot be backlogged, but can be totally or partially lost. Safety stock is an objective to reach rather than an industrial constraint to respect. The problem is NP-hard. We propose mixed integer programming heuristics based on a planning horizon decomposition strategy to find a feasible solution. The planning horizon is partitioned into several sub-horizons over...
The paper addresses a multi-item, multi-plant lot-sizing problem with transfer costs and capacity constraints. The problem is reformulated according to a multi-commodity flow formalism, and decomposed, through Lagrangean relaxation, into a master facility location problem and a slave minimal cost multi-commodity flow problem. The decomposition framework gives rise in a natural way to designing a Lagrangean based heuristic. Numerical experiments showing the efficiency of the proposed approach are...
Download Results (CSV)