The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

New limit theorems related to free multiplicative convolution

Noriyoshi SakumaHiroaki Yoshida — 2013

Studia Mathematica

Let ⊞, ⊠, and ⊎ be the free additive, free multiplicative, and boolean additive convolutions, respectively. For a probability measure μ on [0,∞) with finite second moment, we find a scaling limit of ( μ N ) N as N goes to infinity. The -transform of its limit distribution can be represented by Lambert’s W-function. From this, we deduce that the limiting distribution is freely infinitely divisible, like the lognormal distribution in the classical case. We also show a similar limit theorem by replacing free...

Symmetrization of probability measures, pushforward of order 2 and the Boolean convolution

Wojciech MłotkowskiNoriyoshi Sakuma — 2011

Banach Center Publications

We study relations between the Boolean convolution and the symmetrization and the pushforward of order 2. In particular we prove that if μ₁,μ₂ are probability measures on [0,∞) then ( μ μ ) s = μ s μ s and if ν₁,ν₂ are symmetric then ( ν ν ) ( 2 ) = ν ( 2 ) ν ( 2 ) . Finally we investigate necessary and sufficient conditions under which the latter equality holds.

Page 1

Download Results (CSV)