Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

An upper bound on the basis number of the powers of the complete graphs

Salar Y. Alsardary — 2001

Czechoslovak Mathematical Journal

The basis number of a graph G is defined by Schmeichel to be the least integer h such that G has an h -fold basis for its cycle space. MacLane showed that a graph is planar if and only if its basis number is 2 . Schmeichel proved that the basis number of the complete graph K n is at most 3 . We generalize the result of Schmeichel by showing that the basis number of the d -th power of K n is at most 2 d + 1 .

New edge neighborhood graphs

Ali A. AliSalar Y. Alsardary — 1997

Czechoslovak Mathematical Journal

Let G be an undirected simple connected graph, and e = u v be an edge of G . Let N G ( e ) be the subgraph of G induced by the set of all vertices of G which are not incident to e but are adjacent to u or v . Let 𝒩 e be the class of all graphs H such that, for some graph G , N G ( e ) H for every edge e of G . Zelinka [3] studied edge neighborhood graphs and obtained some special graphs in 𝒩 e . Balasubramanian and Alsardary [1] obtained some other graphs in 𝒩 e . In this paper we given some new graphs in 𝒩 e .

The basis number of some special non-planar graphs

Salar Y. AlsardaryAli A. Ali — 2003

Czechoslovak Mathematical Journal

The basis number of a graph G was defined by Schmeichel to be the least integer h such that G has an h -fold basis for its cycle space. He proved that for m , n 5 , the basis number b ( K m , n ) of the complete bipartite graph K m , n is equal to 4 except for K 6 , 10 , K 5 , n and K 6 , n with n = 5 , 6 , 7 , 8 . We determine the basis number of some particular non-planar graphs such as K 5 , n and K 6 , n , n = 5 , 6 , 7 , 8 , and r -cages for r = 5 , 6 , 7 , 8 , and the Robertson graph.

Page 1

Download Results (CSV)