The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

An upper bound on the basis number of the powers of the complete graphs

Salar Y. Alsardary — 2001

Czechoslovak Mathematical Journal

The basis number of a graph G is defined by Schmeichel to be the least integer h such that G has an h -fold basis for its cycle space. MacLane showed that a graph is planar if and only if its basis number is 2 . Schmeichel proved that the basis number of the complete graph K n is at most 3 . We generalize the result of Schmeichel by showing that the basis number of the d -th power of K n is at most 2 d + 1 .

New edge neighborhood graphs

Ali A. AliSalar Y. Alsardary — 1997

Czechoslovak Mathematical Journal

Let G be an undirected simple connected graph, and e = u v be an edge of G . Let N G ( e ) be the subgraph of G induced by the set of all vertices of G which are not incident to e but are adjacent to u or v . Let 𝒩 e be the class of all graphs H such that, for some graph G , N G ( e ) H for every edge e of G . Zelinka [3] studied edge neighborhood graphs and obtained some special graphs in 𝒩 e . Balasubramanian and Alsardary [1] obtained some other graphs in 𝒩 e . In this paper we given some new graphs in 𝒩 e .

The basis number of some special non-planar graphs

Salar Y. AlsardaryAli A. Ali — 2003

Czechoslovak Mathematical Journal

The basis number of a graph G was defined by Schmeichel to be the least integer h such that G has an h -fold basis for its cycle space. He proved that for m , n 5 , the basis number b ( K m , n ) of the complete bipartite graph K m , n is equal to 4 except for K 6 , 10 , K 5 , n and K 6 , n with n = 5 , 6 , 7 , 8 . We determine the basis number of some particular non-planar graphs such as K 5 , n and K 6 , n , n = 5 , 6 , 7 , 8 , and r -cages for r = 5 , 6 , 7 , 8 , and the Robertson graph.

Page 1

Download Results (CSV)