Unitary sequences and classes of barrelledness.
It is well known that some dense subspaces of a barrelled space could be not barrelled. Here we prove that dense subspaces of l∞ (Ω, X) are barrelled (unordered Baire-like or p?barrelled) spaces if they have ?enough? subspaces with the considered barrelledness property and if the normed space X has this barrelledness property. These dense subspaces are used in measure theory and its barrelledness is related with some sequences of unitary vectors.