In this paper free vibration behavior of laminated composite stiffened elliptic parabolic shell has been analyzed in terms of natural frequency and mode shape. Finite element method has been applied using an eight-noded curved quadratic isoparametric element for shell with a three noded curved beam element for stiffener. Cross and angle ply shells with different edge conditions have been studied varying the size and position of the cutouts to arrive at a set of inferences of practical engineering...
In the present study non-linear free vibration analysis is performed on a tapered Axially Functionally Graded (AFG) beam resting on an elastic foundation with different boundary conditions. Firstly the static problem is carried out through an iterative scheme using a relaxation parameter and later on the subsequent dynamic problem is solved as a standard eigen value problem. Minimum potential energy principle is used for the formulation of the static problem whereas for the dynamic problem Hamilton’s...
A review of literature reveals that bending analysis of laminated composite stiffened hypar shells with cutout have not received due attention. Being a doubly ruled surface, a skewed hypar shell fulfils aesthetic as well as ease of casting requirements. Further, this shell allows entry of north light making it suitable as civil engineering roofing units. Hypar shell with cutout subjected to uniformly distributed load exhibits improved performances with stiffeners. Hence relative performances of...
Download Results (CSV)