On homotopy types of limits of semi-algebraic sets and additive complexity of polynomials
We prove that the number of distinct homotopy types of limits of one-parameter semi-algebraic families of closed and bounded semi-algebraic sets is bounded singly exponentially in the additive complexity of any quantifier-free first order formula defining the family. As an important consequence, we derive that the number of distinct homotopy types of semi-algebraic subsets of defined by a quantifier-free first order formula , where the sum of the additive complexities of the polynomials appearing...