A proper coloring , of a graph is called a graceful -coloring if the induced edge coloring defined by for each edge of is also proper. The minimum integer for which has a graceful -coloring is the graceful chromatic number . It is known that if is a tree with maximum degree , then and this bound is best possible. It is shown for each integer that there is an infinite class of trees with maximum degree such that . In particular, we investigate for each integer a...
For an r-regular graph G, let c : E(G) → [k] = 1, 2, . . . , k, k ≥ 3, be an edge coloring of G, where every vertex of G is incident with at least one edge of each color. For a vertex v of G, the multiset-color cm(v) of v is defined as the ordered k-tuple (a1, a2, . . . , ak) or a1a2 … ak, where ai (1 ≤ i ≤ k) is the number of edges in G colored i that are incident with v. The edge coloring c is called k-kaleidoscopic if cm(u) ≠ cm(v) for every two distinct vertices u and v of G. A regular graph...
Download Results (CSV)