The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
A proper coloring , of a graph is called a graceful -coloring if the induced edge coloring defined by for each edge of is also proper. The minimum integer for which has a graceful -coloring is the graceful chromatic number . It is known that if is a tree with maximum degree , then and this bound is best possible. It is shown for each integer that there is an infinite class of trees with maximum degree such that . In particular, we investigate for each integer a...
For an r-regular graph G, let c : E(G) → [k] = 1, 2, . . . , k, k ≥ 3, be an edge coloring of G, where every vertex of G is incident with at least one edge of each color. For a vertex v of G, the multiset-color cm(v) of v is defined as the ordered k-tuple (a1, a2, . . . , ak) or a1a2 … ak, where ai (1 ≤ i ≤ k) is the number of edges in G colored i that are incident with v. The edge coloring c is called k-kaleidoscopic if cm(u) ≠ cm(v) for every two distinct vertices u and v of G. A regular graph...
Download Results (CSV)