Gaussian estimates for fundamental solutions to certain parabolic systems.
Auscher proved Gaussian upper bound estimates for the fundamental solutions to parabolic equations with complex coefficients in the case when coefficients are time-independent and a small perturbation of real coefficients. We prove the equivalence between the local boundedness property of solutions to a parabolic system and a Gaussian upper bound for its fundamental matrix. As a consequence, we extend Auscher's result to the time dependent case.