The search session has expired. Please query the service again.
Let A be a closed linear operator in a Banach space E. In the study of the nth-order abstract Cauchy problem , t ∈ ℝ, one is led to considering the linear Volterra equation (AVE) , t ∈ ℝ, where and p(·) is a vector-valued polynomial of the form for some elements . We describe the spectral properties of the operator A through the existence of slowly growing solutions of the (AVE). The main tool is the notion of Carleman spectrum of a vector-valued function. Moreover, an extension of a theorem...
Let A be a commutative Banach algebra with Gelfand space ∆ (A). Denote by Aut (A) the group of all continuous automorphisms of A. Consider a σ(A,∆(A))-continuous group representation α:G → Aut(A) of a locally compact abelian group G by automorphisms of A. For each a ∈ A and φ ∈ ∆(A), the function t ∈ G is in the space C(G) of all continuous and bounded functions on G. The weak-star spectrum is defined as a closed subset of the dual group Ĝ of G. For φ ∈ ∆(A) we define to be the union of all...
Download Results (CSV)