The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We study the properties of interfaces in solutions of the Cauchy problem for the nonlinear degenerate parabolic equation u = Δu - u in R x (0,T] with the parameters m > 1, p > 0 satisfying the condition m + p ≥ 2. We show that the velocity of the interface Γ(t) = ∂{supp u(x,t)} is given by the formula v = [ -m / (m-1) ∇u + ∇Π ]| where Π is the solution of the degenerate elliptic equation div (u∇Π) + u = 0, Π = 0 on Γ(t). We give explicit formulas which represent the interface Γ(t)...
Download Results (CSV)