The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 5 of 5

Showing per page

Order by Relevance | Title | Year of publication

The truncated matrix trigonometric moment problem with an open gap

Sergey Zagorodnyuk — 2015

Concrete Operators

This paper is a continuation of our previous investigations on the truncated matrix trigonometric moment problem in Ukrainian Math. J., 2011, 63, no. 6, 786-797, and Ukrainian Math. J., 2013, 64, no. 8, 1199- 1214. In this paper we shall study the truncated matrix trigonometric moment problem with an additional constraint posed on the matrix measure MT(δ), δ ∈ B(T), generated by the seeked function M(x): MT(∆) = 0, where ∆ is a given open subset of T (called a gap). We present necessary and sufficient...

Density of Polynomials in the L^2 Space on the Real and the Imaginary Axes and in a Sobolev Space

Klotz, LutzZagorodnyuk, Sergey M. — 2009

Serdica Mathematical Journal

2000 Mathematics Subject Classification: 41A10, 30E10, 41A65. In this paper we consider an L^2 type space of scalar functions L^2 M, A (R u iR) which can be, in particular, the usual L^2 space of scalar functions on R u iR. We find conditions for density of polynomials in this space using a connection with the L^2 space of square-integrable matrix-valued functions on R with respect to a non-negative Hermitian matrix measure. The completness of L^2 M, A (R u iR ) is also established.

Page 1

Download Results (CSV)