Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

Weighted norm inequalities for vector-valued singular integrals on homogeneous spaces

Sergio Antonio Tozoni — 2004

Studia Mathematica

Let X be a homogeneous space and let E be a UMD Banach space with a normalized unconditional basis ( e j ) j 1 . Given an operator T from L c ( X ) to L¹(X), we consider the vector-valued extension T̃ of T given by T ̃ ( j f j e j ) = j T ( f j ) e j . We prove a weighted integral inequality for the vector-valued extension of the Hardy-Littlewood maximal operator and a weighted Fefferman-Stein inequality between the vector-valued extensions of the Hardy-Littlewood and the sharp maximal operators, in the context of Orlicz spaces. We give sufficient...

Page 1

Download Results (CSV)