The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 10 of 10

Showing per page

Order by Relevance | Title | Year of publication

On the total domination subdivision numbers in graphs

Seyed Sheikholeslami — 2010

Open Mathematics

A set S of vertices of a graph G = (V, E) without isolated vertex is a total dominating set if every vertex of V(G) is adjacent to some vertex in S. The total domination number γ t(G) is the minimum cardinality of a total dominating set of G. The total domination subdivision number sdγt (G) is the minimum number of edges that must be subdivided (each edge in G can be subdivided at most once) in order to increase the total domination number. Karami, Khoeilar, Sheikholeslami and Khodkar, (Graphs and...

The total {k}-domatic number of digraphs

Seyed Mahmoud SheikholeslamiLutz Volkmann — 2012

Discussiones Mathematicae Graph Theory

For a positive integer k, a total k-dominating function of a digraph D is a function f from the vertex set V(D) to the set 0,1,2, ...,k such that for any vertex v ∈ V(D), the condition u N - ( v ) f ( u ) k is fulfilled, where N¯(v) consists of all vertices of D from which arcs go into v. A set f , f , . . . , f d of total k-dominating functions of D with the property that i = 1 d f i ( v ) k for each v ∈ V(D), is called a total k-dominating family (of functions) on D. The maximum number of functions in a total k-dominating family on D is the total k-domatic...

Signed Total Roman Edge Domination In Graphs

Leila AsgharsharghiSeyed Mahmoud Sheikholeslami — 2017

Discussiones Mathematicae Graph Theory

Let G = (V,E) be a simple graph with vertex set V and edge set E. A signed total Roman edge dominating function of G is a function f : Ʃ → {−1, 1, 2} satisfying the conditions that (i) Ʃe′∈N(e) f(e′) ≥ 1 for each e ∈ E, where N(e) is the open neighborhood of e, and (ii) every edge e for which f(e) = −1 is adjacent to at least one edge e′ for which f(e′) = 2. The weight of a signed total Roman edge dominating function f is !(f) = Ʃe∈E f(e). The signed total Roman edge domination number y′stR(G) of...

The k-Rainbow Bondage Number of a Digraph

Jafar AmjadiNegar MohammadiSeyed Mahmoud SheikholeslamiLutz Volkmann — 2015

Discussiones Mathematicae Graph Theory

Let D = (V,A) be a finite and simple digraph. A k-rainbow dominating function (kRDF) of a digraph D is a function f from the vertex set V to the set of all subsets of the set {1, 2, . . . , k} such that for any vertex v ∈ V with f(v) = Ø the condition ∪u∈N−(v) f(u) = {1, 2, . . . , k} is fulfilled, where N−(v) is the set of in-neighbors of v. The weight of a kRDF f is the value w(f) = ∑v∈V |f(v)|. The k-rainbow domination number of a digraph D, denoted by γrk(D), is the minimum weight of a kRDF...

The Distance Roman Domination Numbers of Graphs

Hamideh AramSepideh NorouzianSeyed Mahmoud Sheikholeslami — 2013

Discussiones Mathematicae Graph Theory

Let k be a positive integer, and let G be a simple graph with vertex set V (G). A k-distance Roman dominating function on G is a labeling f : V (G) → {0, 1, 2} such that for every vertex with label 0, there is a vertex with label 2 at distance at most k from each other. The weight of a k-distance Roman dominating function f is the value w(f) =∑v∈V f(v). The k-distance Roman domination number of a graph G, denoted by γkR (D), equals the minimum weight of a k-distance Roman dominating function on...

Matchings and total domination subdivision number in graphs with few induced 4-cycles

Odile FavaronHossein KaramiRana KhoeilarSeyed Mahmoud Sheikholeslami — 2010

Discussiones Mathematicae Graph Theory

A set S of vertices of a graph G = (V,E) without isolated vertex is a total dominating set if every vertex of V(G) is adjacent to some vertex in S. The total domination number γₜ(G) is the minimum cardinality of a total dominating set of G. The total domination subdivision number s d γ ( G ) is the minimum number of edges that must be subdivided (each edge in G can be subdivided at most once) in order to increase the total domination number. Favaron, Karami, Khoeilar and Sheikholeslami (Journal of Combinatorial...

Signed Roman Edgek-Domination in Graphs

Leila AsgharsharghiSeyed Mahmoud SheikholeslamiLutz Volkmann — 2017

Discussiones Mathematicae Graph Theory

Let k ≥ 1 be an integer, and G = (V, E) be a finite and simple graph. The closed neighborhood NG[e] of an edge e in a graph G is the set consisting of e and all edges having a common end-vertex with e. A signed Roman edge k-dominating function (SREkDF) on a graph G is a function f : E → {−1, 1, 2} satisfying the conditions that (i) for every edge e of G, ∑x∈NG[e] f(x) ≥ k and (ii) every edge e for which f(e) = −1 is adjacent to at least one edge e′ for which f(e′) = 2. The minimum of the values...

Page 1

Download Results (CSV)