The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

The k-rainbow domatic number of a graph

Seyyed Mahmoud SheikholeslamiLutz Volkmann — 2012

Discussiones Mathematicae Graph Theory

For a positive integer k, a k-rainbow dominating function of a graph G is a function f from the vertex set V(G) to the set of all subsets of the set 1,2, ...,k such that for any vertex v ∈ V(G) with f(v) = ∅ the condition ⋃u ∈ N(v)f(u) = 1,2, ...,k is fulfilled, where N(v) is the neighborhood of v. The 1-rainbow domination is the same as the ordinary domination. A set f , f , . . . , f d of k-rainbow dominating functions on G with the property that i = 1 d | f i ( v ) | k for each v ∈ V(G), is called a k-rainbow dominating family (of...

Page 1

Download Results (CSV)