The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

Landau's theorem for p-harmonic mappings in several variables

Sh. ChenS. PonnusamyX. Wang — 2012

Annales Polonici Mathematici

A 2p-times continuously differentiable complex-valued function f = u + iv in a domain D ⊆ ℂ is p-harmonic if f satisfies the p-harmonic equation Δ p f = 0 , where p (≥ 1) is a positive integer and Δ represents the complex Laplacian operator. If Ω ⊂ ℂⁿ is a domain, then a function f : Ω m is said to be p-harmonic in Ω if each component function f i (i∈ 1,...,m) of f = ( f , . . . , f m ) is p-harmonic with respect to each variable separately. In this paper, we prove Landau and Bloch’s theorem for a class of p-harmonic mappings f from...

Page 1

Download Results (CSV)