The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We prove the existence of sequences , ϱₙ → 0⁺, and , |zₙ| = 1/2, such that for every α ∈ ℝ and for every meromorphic function G(z) on ℂ, there exists a meromorphic function on ℂ such that converges to G(ζ) uniformly on compact subsets of ℂ in the spherical metric. As a result, we construct a family of functions meromorphic on the unit disk that is -normal for no m ≥ 1 and on which an extension of Zalcman’s Lemma holds.
Download Results (CSV)