The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 6 of 6

Showing per page

Order by Relevance | Title | Year of publication

Analysis of the free boundary for the p-parabolic variational problem (p ≥ 2).

Henrik Shahgholian — 2003

Revista Matemática Iberoamericana

Abstract Variational inequalities (free boundaries), governed by the p-parabolic equation (p > 2), are the objects of investigation in this paper. Using intrinsic scaling we establish the behavior of solutions near the free boundary. A consequence of this is that the time levels of the free boundary are porous (in N-dimension) and therefore its Hausdorff dimension is less than N. In particular the N-Lebesgue measure of the free boundary is zero for each t-level.

Boundary regularity and compactness for overdetermined problems

Ivan BlankHenrik Shahgholian — 2003

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Let D be either the unit ball B 1 ( 0 ) or the half ball B 1 + ( 0 ) , let f be a strictly positive and continuous function, and let u and Ω D solve the following overdetermined problem: Δ u ( x ) = χ Ω ( x ) f ( x ) in D , 0 Ω , u = | u | = 0 in Ω c , where χ Ω denotes the characteristic function of Ω , Ω c denotes the set D Ω , and the equation is satisfied in the sense of distributions. When D = B 1 + ( 0 ) , then we impose in addition that u ( x ) 0 on { ( x ' , x n ) | x n = 0 } . We show that a fairly mild thickness assumption on Ω c will ensure enough compactness on u to give us...

Page 1

Download Results (CSV)