A Hilbert cube compactification of the space of retractions of the interval
Let X = (X,d) be a metric space and let the product space X × ℝ be endowed with the metric ϱ ((x,t),(x’,t’)) = maxd(x,x’), |t - t’|. We denote by the space of bounded upper semicontinuous multi-valued functions φ : X → ℝ such that each φ(x) is a closed interval. We identify with its graph which is a closed subset of X × ℝ. The space admits the Hausdorff metric induced by ϱ. It is proved that if X = (X,d) is uniformly locally connected, non-compact and complete, then is homeomorphic to a...
Let be the space of all lower semi-continuous extended real-valued functions on a Hausdorff space , where, by identifying each with the epi-graph , is regarded the subspace of the space of all closed sets in with the Fell topology. Let We show that is homeomorphic to the Hilbert cube if and only if is second countable, locally compact and infinite. In this case, it is proved that is homeomorphic to (resp. ) if is compact (resp. is non-compact), where is the cone over...
Page 1