The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

Spaces of upper semicontinuous multi-valued functions on complete metric spaces

Katsuro SakaiShigenori Uehara — 1999

Fundamenta Mathematicae

Let X = (X,d) be a metric space and let the product space X × ℝ be endowed with the metric ϱ ((x,t),(x’,t’)) = maxd(x,x’), |t - t’|. We denote by U S C C B ( X ) the space of bounded upper semicontinuous multi-valued functions φ : X → ℝ such that each φ(x) is a closed interval. We identify φ U S C C B ( X ) with its graph which is a closed subset of X × ℝ. The space U S C C B ( X ) admits the Hausdorff metric induced by ϱ. It is proved that if X = (X,d) is uniformly locally connected, non-compact and complete, then U S C C B ( X ) is homeomorphic to a...

Topological structure of the space of lower semi-continuous functions

Katsuro SakaiShigenori Uehara — 2006

Commentationes Mathematicae Universitatis Carolinae

Let L ( X ) be the space of all lower semi-continuous extended real-valued functions on a Hausdorff space X , where, by identifying each f with the epi-graph epi ( f ) , L ( X ) is regarded the subspace of the space Cld F * ( X × ) of all closed sets in X × with the Fell topology. Let LSC ( X ) = { f L ( X ) f ( X ) , f ( X ) ( - , ] } and LSC B ( X ) = { f L ( X ) f ( X ) is a bounded subset of } . We show that L ( X ) is homeomorphic to the Hilbert cube Q = [ - 1 , 1 ] if and only if X is second countable, locally compact and infinite. In this case, it is proved that ( L ( X ) , LSC ( X ) , LSC B ( X ) ) is homeomorphic to ( Cone Q , Q × ( 0 , 1 ) , Σ × ( 0 , 1 ) ) (resp. ( Q , s , Σ ) ) if X is compact (resp. X is non-compact), where Cone Q = ( Q × 𝐈 ) / ( Q × { 1 } ) is the cone over...

Page 1

Download Results (CSV)