The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

On sets of vectors of a finite vector space in which every subset of basis size is a basis

Simeon Ball — 2012

Journal of the European Mathematical Society

It is shown that the maximum size of a set S of vectors of a k -dimensional vector space over 𝔽 q , with the property that every subset of size k is a basis, is at most q + 1 , if k p , and at most q + k p , if q k p + 1 4 , where q = p k and p is prime. Moreover, for k p , the sets S of maximum size are classified, generalising Beniamino Segre’s “arc is a conic” theorem. These results have various implications. One such implication is that a k × ( p + 2 ) matrix, with k p and entries from 𝔽 p , has k columns which are linearly dependent. Another is...

Page 1

Download Results (CSV)