The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 6 of 6

Showing per page

Order by Relevance | Title | Year of publication

Sets invariant under projections onto two dimensional subspaces

Simon FitzpatrickBruce Calvert — 1991

Commentationes Mathematicae Universitatis Carolinae

The Blaschke–Kakutani result characterizes inner product spaces E , among normed spaces of dimension at least 3, by the property that for every 2 dimensional subspace F there is a norm 1 linear projection onto F . In this paper, we determine which closed neighborhoods B of zero in a real locally convex space E of dimension at least 3 have the property that for every 2 dimensional subspace F there is a continuous linear projection P onto F with P ( B ) B .

Sets invariant under projections onto one dimensional subspaces

Simon FitzpatrickBruce Calvert — 1991

Commentationes Mathematicae Universitatis Carolinae

The Hahn–Banach theorem implies that if m is a one dimensional subspace of a t.v.s. E , and B is a circled convex body in E , there is a continuous linear projection P onto m with P ( B ) B . We determine the sets B which have the property of being invariant under projections onto lines through 0 subject to a weak boundedness type requirement.

Page 1

Download Results (CSV)