Singular Poisson reduction of cotangent bundles.
We consider the Poisson reduced space (T* Q)/K, where the action of the compact Lie group K on the configuration manifold Q is of single orbit type and is cotangent lifted to T* Q. Realizing (T* Q)/K as a Weinstein space we determine the induced Poisson structure and its symplectic leaves. We thus extend the Weinstein construction for principal fiber bundles to the case of surjective Riemannian submersions Q → Q/K which are of single orbit type.