The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

Singular Poisson reduction of cotangent bundles.

Simon HochgernerArmin Rainer — 2006

Revista Matemática Complutense

We consider the Poisson reduced space (T* Q)/K, where the action of the compact Lie group K on the configuration manifold Q is of single orbit type and is cotangent lifted to T* Q. Realizing (T* Q)/K as a Weinstein space we determine the induced Poisson structure and its symplectic leaves. We thus extend the Weinstein construction for principal fiber bundles to the case of surjective Riemannian submersions Q → Q/K which are of single orbit type.

Geometry of non-holonomic diffusion

Simon HochgernerTudor S. Ratiu — 2015

Journal of the European Mathematical Society

We study stochastically perturbed non-holonomic systems from a geometric point of view. In this setting, it turns out that the probabilistic properties of the perturbed system are intimately linked to the geometry of the constraint distribution. For G -Chaplygin systems, this yields a stochastic criterion for the existence of a smooth preserved measure. As an application of our results we consider the motion planning problem for the noisy two-wheeled robot and the noisy snakeboard.

Page 1

Download Results (CSV)