An overview of the applications of multisets.
A new generalization of local connectedness called Z-local connectedness is introduced. Basic properties of Z-locally connected spaces are studied and their place in the hierarchy of variants of local connectedness, which already exist in the literature, is elaborated. The class of Z-locally connected spaces lies strictly between the classes of pseudo locally connected spaces (Commentations Math. 50(2)(2010),183-199) and sum connected spaces ( weakly locally connected spaces) (Math. Nachrichten...
Two new generalizations of locally connected spaces called ‘quasi locally connected spaces’ and ‘pseudo locally connected spaces’ are introduced and their basic properties are studied. The class of quasi locally connected spaces properly contains the class of almost locally connected spaces (J. Austral. Math. Soc. 31(1981), 421–428) and is strictly contained in the class of pseudo locally connected spaces which in its turn is properly contained in the class of sum connected spaces (Math. Nachrichten...
Page 1