The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
This paper is motivated by the paper [3], where an iterative method for the computation of a matrix inverse square root was considered. We suggest a generalization of the method in [3]. We give some sufficient conditions for the convergence of this method, and its numerical stabillity property is investigated. Numerical examples showing that sometimes our generalization converges faster than the methods in [3] are presented.
In this paper we give an iterative method to compute the principal n-th root
and the principal inverse n-th root of a given matrix. As we shall show this
method is locally convergent. This method is analyzed and its numerical stability
is investigated.
Download Results (CSV)