The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

Nearly antipodal chromatic number a c ' ( P n ) of the path P n

Srinivasa Rao KolaPratima Panigrahi — 2009

Mathematica Bohemica

Chartrand et al. (2004) have given an upper bound for the nearly antipodal chromatic number a c ' ( P n ) as n - 2 2 + 2 for n 9 and have found the exact value of a c ' ( P n ) for n = 5 , 6 , 7 , 8 . Here we determine the exact values of a c ' ( P n ) for n 8 . They are 2 p 2 - 6 p + 8 for n = 2 p and 2 p 2 - 4 p + 6 for n = 2 p + 1 . The exact value of the radio antipodal number a c ( P n ) for the path P n of order n has been determined by Khennoufa and Togni in 2005 as 2 p 2 - 2 p + 3 for n = 2 p + 1 and 2 p 2 - 4 p + 5 for n = 2 p . Although the value of a c ( P n ) determined there is correct, we found a mistake in the proof of the lower bound when n = 2 p (Theorem 6 ). However,...

Page 1

Download Results (CSV)