The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

Convergence and stability of a discontinuous Galerkin time-domain method for the 3D heterogeneous Maxwell equations on unstructured meshes

Loula FezouiStéphane LanteriStéphanie LohrengelSerge Piperno — 2005

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

A Discontinuous Galerkin method is used for to the numerical solution of the time-domain Maxwell equations on unstructured meshes. The method relies on the choice of local basis functions, a centered mean approximation for the surface integrals and a second-order leap-frog scheme for advancing in time. The method is proved to be stable for cases with either metallic or absorbing boundary conditions, for a large class of basis functions. A discrete analog of the electromagnetic energy is conserved...

Convergence and stability of a discontinuous Galerkin time-domain method for the 3D heterogeneous Maxwell equations on unstructured meshes

Loula FezouiStéphane LanteriStéphanie LohrengelSerge Piperno — 2010

ESAIM: Mathematical Modelling and Numerical Analysis

A Discontinuous Galerkin method is used for to the numerical solution of the time-domain Maxwell equations on unstructured meshes. The method relies on the choice of local basis functions, a centered mean approximation for the surface integrals and a second-order leap-frog scheme for advancing in time. The method is proved to be stable for cases with either metallic or absorbing boundary conditions, for a large class of basis functions. A discrete analog of the electromagnetic energy is conserved...

Page 1

Download Results (CSV)