The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Molecular motors are nano- or colloidal machines that keep the living cell in a highly ordered, stationary state far from equilibrium. This self-organized order is sustained by the energy transduction of the motors, which couple exergonic or 'downhill' processes to endergonic or 'uphill' processes. A particularly interesting case is provided by the chemomechanical coupling of cytoskeletal motors which use the chemical energy released during ATP hydrolysis in order to generate mechanical forces and...
Download Results (CSV)