The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 5 of 5

Showing per page

Order by Relevance | Title | Year of publication

Optimal transportation networks as free Dirichlet regions for the Monge-Kantorovich problem

Giuseppe ButtazzoEugene Stepanov — 2003

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

In the paper the problem of constructing an optimal urban transportation network in a city with given densities of population and of workplaces is studied. The network is modeled by a closed connected set of assigned length, while the optimality condition consists in minimizing the Monge-Kantorovich functional representing the total transportation cost. The cost of trasporting a unit mass between two points is assumed to be proportional to the distance between them when the transportation is carried...

Long-term planning versus short-term planning in the asymptotical location problem

Alessio BrancoliniGiuseppe ButtazzoFilippo SantambrogioEugene Stepanov — 2009

ESAIM: Control, Optimisation and Calculus of Variations

Given the probability measure ν over the given region Ω n , we consider the optimal location of a set Σ composed by n points in Ω in order to minimize the average distance Σ Ω dist ( x , Σ ) d ν (the classical optimal facility location problem). The paper compares two strategies to find optimal configurations: the long-term one which consists in placing all n points at once in an optimal position, and the short-term one which consists in placing the points one by one adding at each step at most one point and preserving...

Long-term planning short-term planning in the asymptotical location problem

Alessio BrancoliniGiuseppe ButtazzoFilippo SantambrogioEugene Stepanov — 2008

ESAIM: Control, Optimisation and Calculus of Variations

Given the probability measure over the given region Ω n , we consider the optimal location of a set composed by points in in order to minimize the average distance Σ Ω dist ( x , Σ ) d ν (the classical optimal facility location problem). The paper compares two strategies to find optimal configurations: the long-term one which consists in placing all points at once in an optimal position, and the short-term one which consists in placing the points one by one adding at each step at most one point and preserving the...

Page 1

Download Results (CSV)