The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 9 of 9

Showing per page

Order by Relevance | Title | Year of publication

On Sobolev spaces of fractional order and ε-families of operators on spaces of homogeneous type

A. GattoStephen Vági — 1999

Studia Mathematica

We introduce Sobolev spaces L α p for 1 < p < ∞ and small positive α on spaces of homogeneous type as the classes of functions f in L p with fractional derivative of order α, D α f , as introduced in [2], in L p . We show that for small α, L α p coincides with the continuous version of the Triebel-Lizorkin space F p α , 2 as defined by Y. S. Han and E. T. Sawyer in [4]. To prove this result we give a more general definition of ε-families of operators on spaces of homogeneous type, in which the identity operator is...

On fractional differentiation and integration on spaces of homogeneous type.

A. Eduardo GattoCarlos SegoviaStephen Vági — 1996

Revista Matemática Iberoamericana

In this paper we define derivatives of fractional order on spaces of homogeneous type by generalizing a classical formula for the fractional powers of the Laplacean [S1], [S2], [SZ] and introducing suitable quasidistances related to an approximation of the identity. We define integration of fractional order as in [GV] but using quasidistances related to the approximation of the identity mentioned before. We show that these operators act on Lipschitz spaces as in the classical cases....

Page 1

Download Results (CSV)