The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let , where k is a nonnegative kernel increasing in x, decreasing in y, and satisfying a triangle inequality. An nth-order Opial inequality has the form . Such inequalities can always be simplified to nth-order reduced inequalities, where the exponent . When n = 1, the reduced inequality is a standard weighted norm inequality, and characterizing the weights is easy. We also find necessary and sufficient conditions on the weights for second-order reduced Opial inequalities to hold.
Necessary and sufficient conditions are given on the weights t, u, v, and w, in order for to hold when and are N-functions with convex, and T is the Hardy operator or a generalized Hardy operator. Weak-type characterizations are given for monotone operators and the connection between weak-type and strong-type inequalities is explored.
Download Results (CSV)