Let , where k is a nonnegative kernel increasing in x, decreasing in y, and satisfying a triangle inequality. An nth-order Opial inequality has the form . Such inequalities can always be simplified to nth-order reduced inequalities, where the exponent . When n = 1, the reduced inequality is a standard weighted norm inequality, and characterizing the weights is easy. We also find necessary and sufficient conditions on the weights for second-order reduced Opial inequalities to hold.
Necessary and sufficient conditions are given on the weights t, u, v, and w, in order for to hold when and are N-functions with convex, and T is the Hardy operator or a generalized Hardy operator. Weak-type characterizations are given for monotone operators and the connection between weak-type and strong-type inequalities is explored.
Download Results (CSV)