A stable and optimal complexity solution method for mixed finite element discretizations
We outline a solution method for mixed finite element discretizations based on dissecting the problem into three separate steps. The first handles the inhomogeneous constraint, the second solves the flux variable from the homogeneous problem, whereas the third step, adjoint to the first, finally gives the Lagrangian multiplier. We concentrate on aspects involved in the first and third step mainly, and advertise a multi-level method that allows for a stable computation of the intermediate and final...
The instationary Stokes and Navier−Stokes equations are considered in a simultaneously space-time variational saddle point formulation, so involving both velocities u and pressure . For the instationary Stokes problem, it is shown that the corresponding operator is a linear mapping between and H', both Hilbert spaces and being Cartesian products of (intersections of) Bochner spaces, or duals of those. Based on these results, the operator that corresponds...
Page 1