Homotopy classes that are trivial mod .
Let 𝒜 be a fixed collection of spaces, and suppose K is a nilpotent space that can be built from spaces in 𝒜 by a succession of cofiber sequences. We show that, under mild conditions on the collection 𝒜, it is possible to construct K from spaces in 𝒜 using, instead, homotopy (inverse) limits and extensions by fibrations. One consequence is that if K is a nilpotent finite complex, then ΩK can be built from finite wedges of spheres using homotopy limits and extensions by fibrations. This is applied...
Using the theory of resolving classes, we show that if X is a CW complex of finite type such that for all sufficiently large n, then map⁎(X,K) ∼ ∗ for every simply-connected finite-dimensional CW complex K; and under mild hypotheses on π₁(X), the same conclusion holds for all finite-dimensional complexes K. Since it is comparatively easy to prove the former condition for X = Bℤ/p (we give a proof in an appendix), this result can be applied to give a new, more elementary proof of the Sullivan conjecture....
This paper is a study of the Gray index of phantom maps. We give a new, tower theoretic, definition of the Gray index, which allows us to study the naturality properties of the Gray index in some detail. McGibbon and Roitberg have shown that if f* is surjective on rational cohomology, then the induced map on phantom sets is also surjective. We show that if f* is surjective just in dimension k, then f induces a surjection on a certain subquotient of the phantom set. If the condition...
Page 1