The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Outliers in a time series often cause problems in fitting a suitable model to the data. Hence predictions based on such models are liable to be erroneous. In this paper we consider a stable first-order autoregressive process and suggest two methods of substituting an outlier by imputed values and then predicting on the basis of it. The asymptotic properties of both the process parameter estimators and the predictors are also studied.
We consider an autoregressive moving average process of order (p,q)(ARMA(p,q)) with stationary, white noise error variables having uniformly bounded fourth order moments. The characteristic polynomials of both the autoregressive and moving average components involve stable and explosive roots. The autoregressive parameters are estimated by using the instrumental variable technique while the moving average parameters are estimated through a derived autoregressive process using the same sample. The...
Download Results (CSV)