The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

Diophantine approximation with partial sums of power series

Bruce C. BerndtSun KimM. Tip PhaovibulAlexandru Zaharescu — 2013

Acta Arithmetica

We study the question: How often do partial sums of power series of functions coalesce with convergents of the (simple) continued fractions of the functions? Our theorems quantitatively demonstrate that the answer is: not very often. We conjecture that in most cases there are only a finite number of partial sums coinciding with convergents. In many of these cases, we offer exact numbers in our conjectures.

On the Bishop-Phelps-Bollobás theorem for operators and numerical radius

Sun Kwang KimHan Ju LeeMiguel Martín — 2016

Studia Mathematica

We study the Bishop-Phelps-Bollobás property for numerical radius (for short, BPBp-nu) of operators on ℓ₁-sums and -sums of Banach spaces. More precisely, we introduce a property of Banach spaces, which we call strongly lush. We find that if X is strongly lush and X ⊕₁ Y has the weak BPBp-nu, then (X,Y) has the Bishop-Phelps-Bollobás property (BPBp). On the other hand, if Y is strongly lush and X Y has the weak BPBp-nu, then (X,Y) has the BPBp. Examples of strongly lush spaces are C(K) spaces, L₁(μ)...

Page 1

Download Results (CSV)