Extension by integer translates of compactly supported function for multiplier spaces on periodic Hardy spaces to multiplier spaces on Hardy spaces is given. Shannon sampling theorem is extended to Hardy spaces.
We give a characterization of the weights (u,w) for which the Hardy-Littlewood maximal operator is bounded from the Orlicz space L_Φ(u) to L_Φ(w). We give a characterization of the weight functions w (respectively u) for which there exists a nontrivial u (respectively w > 0 almost everywhere) such that the Hardy-Littlewood maximal operator is bounded from the Orlicz space L_Φ(u) to L_Φ(w).
A condition on a scaling function which generates a multiresolution analysis of is given.
The boundedness is established for commutators generated by BMO(ℝⁿ) functions and convolution operators whose kernels satisfy certain Fourier transform estimates. As an application, a new result about the boundedness is obtained for commutators of homogeneous singular integral operators whose kernels satisfy the Grafakos-Stefanov condition.
Download Results (CSV)