The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

Supercomplex structures, surface soliton equations, and quasiconformal mappings

Julian ŁawrynowiczKatarzyna KędziaOsamu Suzuki — 1991

Annales Polonici Mathematici

Hurwitz pairs and triples are discussed in connection with algebra, complex analysis, and field theory. The following results are obtained: (i) A field operator of Dirac type, which is called a Hurwitz operator, is introduced by use of a Hurwitz pair and its characterization is given (Theorem 1). (ii) A field equation of the elliptic Neveu-Schwarz model of superstring theory is obtained from the Hurwitz pair (⁴,³) (Theorem 2), and its counterpart connected with the Hurwitz triple ( 11 , 11 , 26 ) is mentioned....

Differential and integral calculus for a Schauder basis on a fractal set (I) (Schauder basis 80 years after)

Julian ŁawrynowiczTatsuro OgataOsamu Suzuki — 2009

Banach Center Publications

In this paper we introduce a concept of Schauder basis on a self-similar fractal set and develop differential and integral calculus for them. We give the following results: (1) We introduce a Schauder/Haar basis on a self-similar fractal set (Theorems I and I'). (2) We obtain a wavelet expansion for the L²-space with respect to the Hausdorff measure on a self-similar fractal set (Theorems II and II'). (3) We introduce a product structure and derivation on a self-similar fractal set (Theorem III)....

Page 1

Download Results (CSV)