Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

Polyèdres finis de dimension 2 à courbure 0 et de rang 2

Sylvain Barré — 1995

Annales de l'institut Fourier

On définit localement la notion de polyèdre de rang deux pour un polyèdre fini de dimension deux à courbure négative ou nulle. On montre que le revêtement universel d’un tel espace est soit le produit de deux arbres, soit un immeuble de Tits euclidien de rang deux.

The 4-string braid group B 4 has property RD and exponential mesoscopic rank

Sylvain BarréMikaël Pichot — 2011

Bulletin de la Société Mathématique de France

We prove that the braid group B 4 on 4 strings, its central quotient B 4 / z , and the automorphism group Aut ( F 2 ) of the free group F 2 on 2 generators, have the property RD of Haagerup–Jolissaint. We also prove that the braid group B 4 is a group of intermediate mesoscopic rank (of dimension 3). More precisely, we show that the above three groups have exponential mesoscopic rank, i.e., that they contain exponentially many large flat balls which are not included in flats.

Page 1

Download Results (CSV)