Currently displaying 1 – 16 of 16

Showing per page

Order by Relevance | Title | Year of publication

Trigonometric approximation by Nörlund type means in L p -norm

Bogdan Szal — 2009

Commentationes Mathematicae Universitatis Carolinae

We show that the same degree of approximation as in the theorems proved by L. Leindler [Trigonometric approximation in L p -norm, J. Math. Anal. Appl. 302 (2005), 129–136] and P. Chandra [Trigonometric approximation of functions in L p -norm, J. Math. Anal. Appl. 275 (2002), 13–26] is valid for a more general class of lower triangular matrices. We also prove that these theorems are true under weakened assumptions.

On the uniform convergence of weighted trigonometric series

Bogdan Szal — 2011

Banach Center Publications

In the present paper we consider a new class of sequences called GM(β,r), which is the generalization of a class defined by Tikhonov in [15]. We obtain sufficient and necessary conditions for uniform convergence of weighted trigonometric series with (β,r)-general monotone coefficients.

Approximation of functions from L p ( ω ) β by general linear operators of their Fourier series

Włodzimierz ŁenskiBogdan Szal — 2011

Banach Center Publications

We show the general and precise conditions on the functions and modulus of continuity as well as on the entries of matrices generating the summability means and give the rates of approximation of functions from the generalized integral Lipschitz classes by double matrix means of their Fourier series. Consequently, we give some results on norm approximation. Thus we essentially extend and improve our earlier results [Acta Comment. Univ. Tartu. Math. 13 (2009), 11-24] and the result of S. Lal [Appl....

Approximation of functions from L p ( ω ) β by linear operators of their Fourier series

Włodzimierz ŁenskiBogdan Szal — 2011

Commentationes Mathematicae

We show the results corresponding to theorems of S. Lal [Appl. Math. Comput., 209 (2009) 346-350] on the rate of approximation of functions from the generalized integral Lipschitz classes by matrix summability means of their Fourier series as well as to the authors theorems [Acta Comment. Univ. Tartu. Math., 13 (2009), 11-24] also on such approximations.

Page 1

Download Results (CSV)