The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We establish that for a fairly general class of topologically transitive dynamical systems, the set of non-transitive points is very small when the rate of transitivity is very high. The notion of smallness that we consider here is that of σ-porosity, and in particular we show that the set of non-transitive points is σ-porous for any subshift that is a factor of a transitive subshift of finite type, and for the tent map of [0,1]. The result extends to some finite-to-one factor systems. We also show...
Let f: X→ X be a topologically transitive continuous map of a compact metric space X. We investigate whether f can have the following stronger properties: (i) for each m ∈ ℕ, is transitive, (ii) for each m ∈ ℕ, there exists x ∈ X such that the diagonal m-tuple (x,x,...,x) has a dense orbit in under the action of . We show that (i), (ii) and weak mixing are equivalent for minimal homeomorphisms, that all mixing interval maps satisfy (ii), and that there are mixing subshifts not satisfying (ii)....
Download Results (CSV)