Cheeger-Goreski-MacPherson's conjecture for the varieties with isolated singularities.
In 1958, H. Grauert proved: If D is a strongly pseudoconvex domain in a complex manifold, then D is holomorphically convex. In contrast, various cases occur if the Levi form of the boundary of D is everywhere zero, i.e. if ∂D is Levi flat. A review is given of the results on the domains with Levi flat boundaries in recent decades. Related results on the domains with divisorial boundaries and generically strongly pseudoconvex domains are also presented. As for the methods, it is explained how Hartogs...
Given a locally pseudoconvex bounded domain Ω, in a complex manifold M, the Hartogs type extension theorem is said to hold on Ω if there exists an arbitrarily large compact subset K of Ω such that every holomorphic function on Ω-K is extendible to a holomorphic function on Ω. It will be reported, based on still unpublished papers of the author, that the Hartogs type extension theorem holds in the following two cases: 1) M is Kähler and ∂Ω is C²-smooth and not Levi flat; 2) M is compact Kähler and...
We compute the Levi form of the logarithm of the distance function for real hypersurfaces in two dimensional complex tori, and discuss the characterization of Levi flat hypersurfaces there.
Page 1