The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Given an ultragraph in the sense of Tomforde, we construct a topological quiver in the sense of Muhly and Tomforde in such a way that the universal C*-algebras associated to the two objects coincide. We apply results of Muhly and Tomforde for topological quiver algebras and of Katsura for topological graph C*-algebras to study the K-theory and gauge-invariant ideal structure of ultragraph C*-algebras.
Download Results (CSV)