The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

Explicit algebraic dependence formulae for infinite products related with Fibonacci and Lucas numbers

Hajime KanekoTakeshi KurosawaYohei TachiyaTaka-aki Tanaka — 2015

Acta Arithmetica

Let d ≥ 2 be an integer. In 2010, the second, third, and fourth authors gave necessary and sufficient conditions for the infinite products k = 1 U d k - a i ( 1 + ( a i ) / ( U d k ) ) (i=1,...,m) or k = 1 V d k - a i ( 1 + ( a i ) ( V d k ) (i=1,...,m) to be algebraically dependent, where a i are non-zero integers and U n and V n are generalized Fibonacci numbers and Lucas numbers, respectively. The purpose of this paper is to relax the condition on the non-zero integers a 1 , . . . , a m to non-zero real algebraic numbers, which gives new cases where the infinite products above are algebraically dependent....

Page 1

Download Results (CSV)